
2025-2-28

DexGraspVLA: A Vision-Language-Action Framework
Towards General Dexterous Grasping
Yifan Zhong1,2*, Xuchuan Huang1,2*, Ruochong Li2,3, Ceyao Zhang1,2, Yitao Liang1,2, Yaodong Yang1,2†,
Yuanpei Chen1,2†
1Institute for AI, Peking University, 2PKU-PsiBot Joint Lab, 3Hong Kong University of Science and Technology (Guangzhou)

DexGraspVLA
90+% success rate under 1200+ unseen 

object, lighting, and background combinations

Figure 1 | We propose DexGraspVLA, a hierarchical vision-language-action framework that reaches a 90+%
dexterous grasping success rate under thousands of unseen object, lighting, and background combinations in a
“zero-shot” real-world environment.

Abstract
Dexterous grasping remains a fundamental yet chal-
lenging problem in robotics. A general-purpose robot
must be capable of grasping diverse objects in ar-
bitrary scenarios. However, existing research typi-
cally relies on specific assumptions, such as single-
object settings or limited environments, leading to con-
strained generalization. Our solution is DexGraspVLA,
a hierarchical framework that utilizes a pre-trained
Vision-Language model as the high-level task planner
and learns a diffusion-based policy as the low-level
Action controller. The key insight lies in iteratively
transforming diverse language and visual inputs into
domain-invariant representations, where imitation
learning can be effectively applied due to the alle-
viation of domain shift. Thus, it enables robust gener-
alization across a wide range of real-world scenarios.
Notably, our method achieves a 90+% success rate
under thousands of unseen object, lighting, and back-
ground combinations in a “zero-shot” environment.

Empirical analysis further confirms the consistency of
internal model behavior across environmental varia-
tions, thereby validating our design and explaining
its generalization performance. We hope our work
can be a step forward in achieving general dexter-
ous grasping. Our demo and code can be found at
https://dexgraspvla.github.io/.

1. Introduction

Dexterous multi-fingered hands, as versatile robotic
end-effectors, have demonstrated remarkable capabil-
ities across various manipulation tasks [1, 2, 3, 4, 5,
6, 7, 8, 9]. Among these capabilities, grasping serves
as the most fundamental prerequisite, yet remains
one of the most challenging problems. Existing dex-
terous grasping approaches are primarily evaluated
on isolated objects or under simplified settings. Nev-
ertheless, real-world applications demand more gen-

∗Equal contribution. †Corresponding author(s): Yuanpei Chen{yuanpei.chen312@gmail.com},Yaodong Yang{yaodong.yang@pku.edu.cn}.
© 2025 PsiBot. All rights reserved

https://dexgraspvla.github.io/


DexGraspVLA: A Vision-Language-Action Framework Towards General Dexterous Grasping

eral grasping capabilities that can function reliably
in diverse scenarios such as industrial manufacturing
and household environments. However, developing
general dexterous grasping capabilities presents multi-
faceted challenges. At the object level, the policy must
generalize across diverse physical properties includ-
ing geometries, masses, textures, and orientations.
Beyond object characteristics, the system must also
demonstrate robustness to various environmental fac-
tors, such as lighting conditions, background complex-
ities, and potential disturbances. Compounding these
challenges, multi-object scenarios introduce additional
complexity that demands sophisticated reasoning ca-
pabilities. For instance, in cluttered or stacked envi-
ronments, planning the optimal sequence to grasp all
objects becomes a crucial cognitive task that extends
beyond simple grasp execution.

Traditional approaches in dexterous grasping follow
a two-stage pipeline: first predicting target grasp pose
from single-frame perception, then executing open-
loop motion planning to reach the pose [10, 11, 12].
However, such methods are heavily constrained by
precise camera calibration and mechanical accuracy
requirements. End-to-end approaches like imitation
learning and reinforcement learning, enable closed-
loop grasping by continuously adjusting actions based
on real-time perceptual feedback, offering more robust
and adaptive solutions. Recent years have witnessed
remarkable progress in applying reinforcement learn-
ing to robotic systems [13, 14, 15, 16]. Leveraging
large-scale parallel simulation, reinforcement learn-
ing enables robots to undergo extensive training in
simulation and then deploy the learned policies to
the real-world. Despite such progress, the complexity
of real-world physical parameters presents significant
challenges in simulation modeling, leading to an in-
evitable sim-to-real gap. Meanwhile, researchers have
explored imitation learning approaches to learn ma-
nipulation skills [17, 18, 19]. These methods collect
human demonstration data through teleoperation and
directly learn the mapping from raw perceptual input
to robot control commands using supervised learn-
ing. Nevertheless, such approaches often struggle with
generalization beyond the demonstration data. While
general grasping requires handling diverse objects and
environments, collecting demonstrations for all situ-
ations is impractical. Thus, the key challenge lies in
how to efficiently utilize the demonstration data to
achieve broader generalization.

The rapid emergence of vision and language foun-
dation models [20, 21, 22, 23, 24] presents promising
opportunities for robotic manipulation. Leveraging
vast amounts of internet-scale data in pre-training,
these models demonstrate remarkable scene under-
standing and generalization capabilities for visual and

linguistic inputs. While it appears intuitive to directly
task these models with generating robotic control com-
mands [25, 26], this straightforward strategy faces
fundamental limitations. The absence of physical in-
teraction data in their training process results in mod-
els with limited spatial intelligence. An alternative
approach integrates vision-language models (VLMs)
into robotic control policies, training them in an end-
to-end manner [27, 28]. However, this paradigm typ-
ically demands an enormous volume of manually col-
lected demonstrations [29, 30] in an attempt to en-
compass the full range of real-world diversity and
complexity. Even so, these models exhibit markedly
reduced performance on unseen scenarios and still re-
quire further data collection and fine-tuning to handle
new conditions. In addition, the substantial dispar-
ity between robotics datasets and the massive pre-
training corpora leads to catastrophic forgetting, com-
promising the model’s valuable long-range reasoning
capabilities. Effectively utilizing foundation models’
world knowledge to enhance generalization in robotic
policies remains challenging.

In this paper, we present DexGraspVLA, the first
hierarchical Vision-Language-Action (VLA) framework
for general dexterous grasping that integrates the com-
plementary strengths of foundation models and im-
itation learning. At the high level, it utilizes a pre-
trained VLM as a task planner, which interprets and
reasons about language instructions, plans the over-
all grasping task, and provides supervisory signals.
Guided by these signals and multimodal inputs, a low-
level diffusion-based modularized controller produces
closed-loop action sequences. The essence of Dex-
GraspVLA lies in leveraging foundation models to iter-
atively transform diverse vision and language inputs
into domain-invariant representations, where it then
efficiently and effectively applies diffusion-based imi-
tation learning to capture the action distribution in our
dexterous grasping dataset. As a result, novel scenar-
ios outside the training set no longer induce failures,
because the foundation models translate them into
representations resembling those encountered during
training — thus remaining within the learned pol-
icy’s domain. This approach fuses the extensive world
knowledge of foundation models with the strong ac-
tion modeling capacity of imitation learning, thereby
enabling robust generalization performance in real-
world applications.

Notably, DexGraspVLA achieves an unprecedented
90.8% success rate for grasping in cluttered scenes
spanning 1,287 unseen object, lighting, and back-
ground combinations, all tested in a “zero-shot” en-
vironment. Systematic evaluations on a single-object
grasping benchmark show that DexGraspVLA reaches
a 98.6% aggregated success rate, outperforming exist-
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ing baselines whose controller learns directly from raw
visual inputs by at least 48%. Furthermore, our empir-
ical analysis reveals that the internal representations
and the attention maps within DexGraspVLA remain
consistent across varying environments, thereby sub-
stantiating its framework design and explaining its
performance. These results confirm that DexGraspVLA
can learn effectively from a modest amount of single-
domain human demonstrations while generalizing reli-
ably to a broad range of real-world situations, marking
a promising step toward general dexterous grasping.

2. Related work

2.1. Dexterous Grasping

Dexterous grasping typically falls into two categories:
two-stage approaches and end-to-end methods. Two-
stage approaches first generate a grasp pose and then
control the dexterous hand targeting this pose. The
main challenge is generating high-quality grasp poses
based on visual observation. Current methods em-
ploy sample-based [31, 32], optimization-based [11,
12, 33, 34, 35, 36], or regression-based [37, 38] ap-
proaches to generate target grasp poses, followed by
motion planning for robot execution. For instance,
SpringGrasp [10] models uncertainties in partial ob-
servations using optimization-based methods to im-
prove grasp pose generation quality. UGG [39] pro-
poses a diffusion-based approach to unify the genera-
tion of grasping poses and object geometries. While
these methods benefit from decoupled perception and
control and simulation data generation, they typically
suffer from the lack of closed-loop feedback and sen-
sitivity to disturbances and calibration errors.

End-to-end methods directly model grasping trajec-
tories using imitation learning or reinforcement learn-
ing. Recent works explored training dexterous manip-
ulation using reinforcement learning in simulation en-
vironments and transfer to the real-world [40, 1, 41, 2,
42, 43, 13, 14, 15, 16, 44, 3, 4, 5, 6, 7, 45, 46, 47, 48].
DexVIP [49] and GRAFF [50] generate affordance
hints using computer vision methods and use rein-
forcement learning to train policies based on these
features. DextrAH-G [51] and DextrAH-RGB [52]
demonstrate some generalization capabilities in the
real-world through large-scale parallel training in
simulation. However, this reliance on simulation in-
evitably introduces sim-to-real gaps, while direct train-
ing in the real-world suffers from poor sample ef-
ficiency. Recently, imitation learning using human
demonstration has shown remarkable results in com-
plex tasks [50, 53, 54, 17, 18, 19, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67]. These methods re-
quire human teleoperation to collect demonstration

data and directly learn the distribution in the dataset.
While being easier to train, this approach limits their
generalization capabilities. SparseDFF [68] and Neu-
ral Attention Field [69] explore how to enhance gen-
eralization through 3D distilled feature fields.

2.2. Foundation Models for Robotics

Recent years have witnessed remarkable progress in
foundation models pretrained on large-scale datasets.
Vision foundation models [23, 24, 20, 70, 71] exhibit
robust out-of-distribution generalization, while VLMs
including GPT-4o [22] and Qwen2.5-VL [72] demon-
strate sophisticated multimodal reasoning abilities.
Leveraging these foundation models effectively has
become a promising direction in robotics research.
One prominent approach, exemplified by RT-X [30],
OpenVLA [27], Pi0 [28], and more [73, 74, 75, 76,
77],involves directly fine-tuning VLMs on robotic data.
However, this strategy demands a large volume of
demonstrations spanning diverse real-world condi-
tions to achieve generalization. Even the largest cur-
rently available robotic datasets [29, 30, 28] fall short
of covering the full breadth of scenarios; models
trained on them still struggle to match their perfor-
mance on seen domains and typically require addi-
tional data collection and fine-tuning for new environ-
ments. Moreover, these models often sacrifice some
of their advanced reasoning abilities due to the com-
plexity of robotic manipulation tasks and the scarcity
of specialized data. Another line of research, exempli-
fied by VoxPoser [25] and Rekep [26], leverages VLMs
to generate task-specific outputs, such as affordance
maps or constraint points, that can then be integrated
with conventional motion planning. While this hier-
archical strategy generally preserves VLMs’ inherent
reasoning capacities, it relies on sufficiently robust
low-level controllers to execute high-level commands,
making the design of effective interfaces critical. Our
work harnesses pre-trained foundation models to gen-
erate domain-invariant representations, which facili-
tates the learning of a dexterous grasping policy. By
offloading much of the real-world complexity to the
foundation models, we can significantly reduce the
amount of demonstration data required and, at the
same time, realize strong zero-shot generalization.

3. Problem Formulation

Our goal is to develop a vision-based control policy
for language-guided dexterous grasping, formulated
as a sequential decision-making problem. Initially, a
language instruction 𝑙 is given, e.g. “grasp the toy”, to
directly specify the target object. At each timestep 𝑡,
the policy 𝜋 receives a first-view image Iw𝑡 ∈ ℝ𝐻×𝑊×3

from the wrist camera (𝐻 and𝑊 denote the height and
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Figure 2 | Overview of our framework. DexGraspVLA adopts a hierarchical architecture composed of an
off-the-shelf VLM-based high-level planner and a diffusion-based low-level controller. Given a cluttered
scene, the planner reasons about the user prompt, e.g., “clear the table”, decomposing it into multiple grasping
instructions when necessary. For each instruction 𝑙, e.g., “grasp the cookie”, the planner identifies the target
object 𝐴 from the head image Ih𝑡0 and marks its bounding box (𝑥

𝐴
1 , 𝑦

𝐴
1 , 𝑥

𝐴
2 , 𝑦

𝐴
2 ) at initial time 𝑡0. The controller

consists of four parts: (1) two segmentation models including SAM, which obtains the object’s mask m𝑡0 at 𝑡0,
and Cutie, a video segmentation model that continuously tracks the mask m𝑡 during each grasping process; (2)
three vision encoders including two frozen DINOv2 that extract features from the third-view image Ih𝑡 and the
first-view image Iw𝑡 , and a trainable ViT that deals with the mask m𝑡; (3) three MLP projectors that map the
visual features and robot proprioceptive state into the same feature space, forming a feature sequence; and (4)
a DiT that predicts an action chunk from a𝑡 to a𝑡+𝐻−1. During the controller’s grasping process, the planner
monitors the execution, checks whether grasping succeeds, and assists re-grasping when failing. This process
continues until the user prompt is fully completed.

width of the image), a third-view image Ih𝑡 ∈ ℝ𝐻×𝑊×3

from the head camera, and the robot proprioception
s𝑡 ∈ ℝ13 consisting of seven arm joint angles sarm𝑡 ∈ ℝ7

and six hand joint angles shand𝑡 ∈ ℝ6. Conditioned
on these observations, the robot produces an action
a𝑡 = (aarm𝑡 , ahand𝑡 ) ∈ ℝ13, where aarm𝑡 ∈ ℝ7 and ahand𝑡 ∈
ℝ6 denote the target joint angles for arm and hand
respectively, by sampling from the action distribution
𝜋(·|{Iw

𝑗
}𝑡
𝑗=0, {I

h
𝑗
}𝑡
𝑗=0, {s 𝑗}

𝑡
𝑗=0, 𝑙). This process continues

until a termination condition is reached. The robot
receives a binary reward 𝑟 ∈ {0, 1} indicating whether

it has completed the instruction 𝑙 successfully. The goal
of the policy 𝜋 is to maximize the expected reward
𝔼𝑙,{ (Iw

𝑗
,Ih

𝑗
,s 𝑗,a 𝑗 ) }𝑇𝑗=0

[𝑟].

More generally, we consider the case where the
user prompt 𝑝 may be a long-horizon task involving
multiple grasping processes, such as “clear the table”.
This requires the policy 𝜋 to reason about the prompt,
decompose it into individual grasping instructions {𝑙𝑖},
and complete them sequentially.
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4. Methods

This section introduces DexGraspVLA, the first hierar-
chical VLA framework for dexterous grasping. We will
first elaborate DexGraspVLA framework (Section 4.1)
and then detail our data collection procedure (Sec-
tion 4.2), which together enable the training of a dex-
terous grasping policy.

4.1. DexGraspVLA Framework

As illustrated in Figure 2, DexGraspVLA adopts a hier-
archical and modularized architecture composed of a
planner and a controller. Below we explain how each
part is designed.

Planner. We recognize that to achieve general dex-
terous grasping, the model needs to be able to handle
multimodal inputs, perform visual grounding, and
conduct reasoning about user prompts. Building upon
recent advances in VLMs, we adopt an off-the-shelf
pre-trained Qwen-VL-Chat [78] as a high-level planner
to outline and monitor the dexterous grasping work-
flow. Given the user prompt 𝑝, the planner reasons
about the execution plan conditioning on the head
camera observation. Specifically, if 𝑝 is a long-horizon
task description involving multiple grasping steps, e.g.,
“clear the table”, the planner considers object positions
and orientations on the table, and proposes a suitable
grasping instruction 𝑙1 as a first step, e.g., “grasp the
cookie”. Otherwise, if 𝑝 directly targets one object for
grasping, the planner regards it as the instruction 𝑙.

For each instruction 𝑙, the planner guides the low-
level controller by marking the target object bounding
box (𝑥1, 𝑦1, 𝑥2, 𝑦2) in the head camera image Ih𝑡0 at the
initial timestep 𝑡0. While the phrasing and content of
language instruction can be diverse and flexible for dif-
ferent users and cases, i.e., showing domain-variance,
the bounding box is a consistent format for object po-
sitioning regardless of the changes in language and
visual inputs, i.e., achieving domain-invariance. Thus,
this transformation alleviates the learning challenge
for the controller.

On receiving the bounding box, the controller be-
gins execution. During this process, the planner mon-
itors the progress by querying the current head image
at a frequency of 1Hz. If it finds that the robot suc-
cessfully grasps the object, the planner executes a
scripted placing motion to place the object into a bag
and then resets the robotic arm and hand to the initial
state. Afterward, the planner proposes new grasping
instruction 𝑙2 by reasoning about the prompt and the
remaining objects in its view, until the prompt 𝑝 is
fully completed. On the other hand, if the controller
fails to grasp the target object, the planner resets the

robot and re-initializes the grasping loop with a new
instruction based on the current object states.

Controller. Based on the target bounding box
(𝑥1, 𝑦1, 𝑥2, 𝑦2), the controller aims to grasp the in-
tended object in cluttered environments. We feed
this bounding box as input to SAM [23] to obtain an
initial binary mask m0 ∈ {0, 1}𝐻×𝑊×1 of the target
object and then use Cutie [79] to continuously track
the mask over time, producing m𝑡 at each timestep 𝑡.
This ensures accurate identification in cluttered scenes
throughout the process. The problem is to learn the
policy 𝜋 that effectively models the action distribution
𝜋(·|Iw𝑡 , Ih𝑡 , s𝑡,m𝑡).

To achieve general-purpose dexterous grasping ca-
pabilities, the systemmust generalize effectively across
diverse real-world scenarios. However, the high vari-
ability in raw visual inputs Iw𝑡 , Ih𝑡 poses a fundamental
challenge to learning task-critical representations. Tra-
ditional imitation learning approaches often fail catas-
trophically even under minor variations in objects or
environmental conditions. To address this issue, our
solution is again to convert potentially domain-varying
inputs into domain-invariant representations suitable
for imitation learning. We recognize that while pixel-
level perception can vary widely, the fine-grained se-
mantic features extracted by large foundation models
tend to be more robust and consistent. This will be
empirically substantiated in Section 5.5. Thus, we
utilize a feature extractor 𝜙, such as DINOv2 [20]
that has been pre-trained on internet-scale data, to
obtain features from raw images. At each timestep 𝑡,
we obtain head camera image features

zh𝑡 = 𝜙h (Ih𝑡 ) ∈ ℝ𝐿h×𝐷h ,

and wrist camera image features

zw𝑡 = 𝜙w (Iw𝑡 ) ∈ ℝ𝐿w×𝐷w ,

where 𝐿h, 𝐷h, 𝐿w, 𝐷w denote length and hidden dimen-
sion of the feature sequences for head and wrist re-
spectively. As we show in Section 5.5, these extracted
features remain comparatively invariant to distracting
visual factors.

Up to now, raw language and vision inputs, includ-
ing instruction 𝑙 and images Iw𝑡 , Ih𝑡 , have been iter-
atively transformed into domain-invariant represen-
tations, including mask m𝑡 and features zh𝑡 , zw𝑡 , by
leveraging foundation models. This lays the stage for
imitation learning. We now learn the policy 𝜋 that
predicts an action chunk of horizon 𝐻 conditioning on
these representations.

To fuse the object mask with head camera features,
we projectm𝑡 into the head image feature space using
a randomly initialized ViT, producing zm𝑡 ∈ ℝ𝐿h×𝐷h .
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We then concatenate zm𝑡 and zh𝑡 patch-wise to form

z̄h𝑡 ∈ ℝ𝐿h×2𝐷h .

Subsequently, we map z̄h𝑡 , the wrist-camera features
zw𝑡 , and the robot state s𝑡 into a common embedding
space with separate MLPs, yielding z̃h𝑡 , z̃w𝑡 , and z̃s𝑡 .
These embeddings are then concatenated to form the
full observation feature sequence

z̃obs𝑡 ∈ ℝ(1+𝐿h+𝐿w )×𝐷.

For action prediction, we employ a diffusion trans-
former (DiT) [80] to generate multi-step actions, fol-
lowing the diffusion policy paradigm [81, 76, 28].
Concretely, at each timestep 𝑡, we bundle the next 𝐻
actions into a chunk A𝑡 = a𝑡:𝑡+𝐻 = [a𝑡, a𝑡+1, . . . , a𝑡+𝐻−1].
During training, a random diffusion step 𝑡𝑑 = 𝑘 is sam-
pled, and Gaussian noise 𝝐 is added to A𝑡, yielding the
noised action tokens x𝑘. Formally,

x𝑘 = 𝛼𝑘A𝑡 + 𝜎𝑘𝝐,

where 𝛼𝑘 and 𝜎𝑘 are the standard DDPM coefficients.
We then feed x𝑘 into the DiT alongside the observation
feature sequence z̃obs𝑡 . Each DiT layer performs bidi-
rectional self-attention over the action tokens, cross-
attention to z̃obs𝑡 , and MLP transformations, ultimately
predicting the original noise 𝝐. By minimizing the
discrepancy between predicted and true noise, the
model learns to reconstruct the ground-truth action
chunk A𝑡. At inference time, iterative denoising steps
recover the intended multi-step action sequence from
the learned distribution, enabling robust imitation of
complex, long-horizon behaviors. We also employ the
receding horizon control strategy that only executes
the first 𝐻𝑎 actions before generating a new action
chunk prediction, enhancing real-time responsiveness.

Overall, DexGraspVLA performs imitation learn-
ing on domain-invariant representations derived from
domain-varying inputs via foundation models. This
approach not only leverages the world knowledge and
generalization capabilities of foundation models, but
also effectively captures the mapping from these ab-
stracted representations to the final action output.
Next, we discuss our data collection that fuels Dex-
GraspVLA training.

4.2. Data Collection

To train our dexterous grasping policy, we manu-
ally collect a dataset comprising 2,094 successful
episodes of grasping in cluttered scenes. This dataset
involves 36 household objects spanning a broad range
of sizes, weights, geometries, textures, materials, and
categories. Each episode 𝜏 = {(Ih𝑡 , Iw𝑡 , s𝑡,m𝑡, a𝑡)}𝑇𝑡=0

Head Camera
(Realsense D435)

Wrist Camera
(Realsense D405C)

7-DoF Robotic Arm
(Realman RM75-6F)

6-DoF Robotic Hand
(PsiBot G0-R)

Operational 
Workspace

Figure 3 | The hardware platform used for dexterous
grasping.

records the raw camera images Ih𝑡 , Iw𝑡 , the robot pro-
prioception s𝑡, the object mask m𝑡, and the action
a𝑡 at each timestep 𝑡. The mask m𝑡 is labeled in the
same way as in the controller. For each object, we
place it at nine locations arranged in a 3 × 3 grid and
collect multiple grasping demonstrations at each po-
sition. The other objects in the cluttered scenes are
randomized between episodes. These demonstrations
are performed at typical human motion speeds, tak-
ing about 3.5 s each. They undergo rigorous manual
inspection to ensure quality and reliability. The Dex-
GraspVLA controller is trained on this dataset with
imitation learning.

5. Experiments

In this section, we comprehensively evaluate the per-
formance of DexGraspVLA. All experiments are con-
ducted on a different robot and environment from
the demonstration setup. This "zero-shot" setting is
fundamentally more challenging than most prior im-
itation learning research, which relies on few-shot
learning for high performance. Our experiments seek
to address the following questions:

1. How effectively does DexGraspVLA generalize to
thousands of diverse, previously unseen object,
lighting, and background combinations in clut-
tered scenes? (Section 5.2)

2. How does DexGraspVLA’s generalization advan-
tage compare against baselines that do not utilize
frozen feature extractors and learn directly from
raw visual inputs? (Section 5.3)

3. How accurate are bounding-box predictions from
the high-level planner of DexGraspVLA across
different scenarios? (Section 5.4)

4. Does DexGraspVLA exhibit consistent internal
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(a)

(b)

Figure 4 | (a) A representative part of unseen ob-
jects used in our experiments. In total, we test Dex-
GraspVLA on 360 unseen objects that span a wide
range of categories. (b) A t-SNE projection illustrat-
ing the diversity of all unseen objects. Each point
denotes one object, where color indicates shape (e.g.,
bottle, cylinder, sphere), marker type denotes sur-
face roughness (smooth, medium, rough), and point
size reflects mass. The plot is derived from a high-
dimensional attribute space (including length, width,
height, mass, roughness, and shape), highlighting the
broad coverage of sizes, weights, geometries, and tex-
tures represented by these objects.

model behaviors under varying environments?
(Section 5.5)

5.1. Experiment Setups

Hardware Platform. As illustrated in Figure 3, the
robot we use for dexterous grasping is a 7-DoF Real-
man RM75-6F arm paired with a 6-DoF PsiBot G0-R
hand. A Realsense D405C camera, mounted on the
arm’s wrist, provides a first-person viewpoint, while
a Realsense D435 camera on the robot’s head offers
a third-person perspective. Objects to be grasped are
placed on a table in front of the robot. The control
frequency of the robot is 20 Hz.

Baselines. To the best of our knowledge, there are no
existing work that can directly serve as baselines for
comparison. Most of dexterous grasping methods can-

Unseen

Objects

(360)

Unseen

Backgrounds

(6 × 103)

Unseen

Lightings

(3 × 103)

Aggregated

(1287)

Ours@1 91.1% 90.5% 90.9% 90.8%

Ours@2 95.3% 94.2% 95.1% 94.7%

Ours@3 96.7% 96.7% 97.4% 96.9%

Table 1 | The performance of DexGraspVLA under dif-
ferent unseen conditions. The first row suggests that
DexGraspVLA consistently achieves a 90+% success
rate across thousands of unseen object, background,
and lighting combinations, highlighting robustness
to environmental changes and strong generalization.
The second and third row shows its potential to reach
even higher success rates given more chances.

not process language inputs for cluttered scene, while
existing VLA frameworks that accept language inputs
are incompatible with dexterous hands. Therefore,
we compare the following methods: (1) DexGraspVLA
(Ours): A full implementation of DexGraspVLA. (2)
DexGraspVLA (DINOv2-train): Same design as Ours
except that the two DINOv2 models are trainable in-
stead of frozen. (3) DexGraspVLA (ViT-small): Same
design as Ours except that the two DINOv2 models are
replaced with two small trainable pretrained ViTs (the
R26-S-32 ResNet-ViT hybrid from Steiner et al. [82]).
Empirically, DexGraspVLA (ViT-small) represents an
enhanced version of diffusion policy [81]. Implemen-
tation details of these methods are provided in Ap-
pendix A. In preliminary experiments, we find that
failures may arise from randomness in policy inference
and can be overcome with additional attempts. Thus,
in Section 5.2, we compare DexGraspVLA (Ours@𝑘),
with 𝑘 ranging from 1 to 3. These are the same as
Ours except that they are allowed 𝑘 attempts for each
test respectively. Ours@1 is equivalent to Ours. Note
that re-grasps performed by the policy after an initial
failure within a single attempt are allowed and do
not count as separate attempts. In Section 5.4, we
report the bounding box prediction performance of
DexGraspVLA (planner), which is a full implementa-
tion of the high-level planner in DexGraspVLA.

5.2. Large-Scale Generalization Evaluation

Tasks. We curate 360 previously unseen objects, 6
unseen backgrounds, and 3 unseen lighting conditions.
The objects are carefully selected to ensure they cover
a broad range of sizes, weights, geometries, textures,
materials, and categories, while also being graspable
by our dexterous hand. This diversity is visualized in
Figure 4. The backgrounds and lighting conditions are
also chosen to be highly different. Based on this setup,
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we design three types of grasping tasks in cluttered
scenes, each cluttered scene involving approximately
six objects: (1) Unseen Objects: Grasp an unseen object
from a random scene on a white table under white
light. Each of the 360 unseen objects is targeted once,
summing up to 360 tests. (2) Unseen Backgrounds: We
first randomly select 103 unseen objects as the object
subset S. For each background, we randomly arrange
103 cluttered scenes with objects in S under white
light. Each of the 103 objects is targeted once, leading
to 618 tests in total. (3) Unseen Lightings: For each
unseen lighting, we construct 103 cluttered scenes
with objects in S on a white table. We target each of
the 103 objects once, amounting to 309 tests. Details
can be found in Appendix B.

Metric. We consider a grasping attempt successful if
it holds the object 10 cm above the table for 20 s. We
report success rate as the evaluation metric, which is
defined as the number of successful tests divided by
the total number of tests. We also report the aggre-
gated performance as a weighted sum of individual
success rates based on their proportions.

Results. We present the quantitative results in Ta-
ble 1. From the first row (“Ours@1”), DexGraspVLA
achieves a 91.1% single-attempt success rate on 360
unseen objects, 90.5% on 6 unseen backgrounds, and
90.9% under 3 unseen lighting conditions, resulting in
a 90.8% aggregated success rate. These results demon-
strate that DexGraspVLA accurately controls the dex-
terous hand to grasp the specified object from clutter,
while remaining robust to environmental changes. No-
tably, although the evaluation environment is novel
and the tasks are previously unseen, DexGraspVLA
consistently achieves high success rates without any
domain-specific fine-tuning, underscoring strong gen-
eralization. This suggests that our framework substan-
tially alleviates the longstanding challenge in imita-
tion learning — namely, overfitting to a single domain
and relying on finetuning for satisfactory performance
— and is potentially meaningful for a wide range of
applications. We further analyze the source of this
generalization in 5.5.

Qualitatively, DexGraspVLA learns to dexterously
adjust the arm and hand to accommodate varying ob-
ject geometries, sizes, and positions. Although phys-
ical interference or suboptimal actions occasionally
cause missed grasps, the closed-loop nature of our
policy facilitates re-grasps based on updated observa-
tions, enhancing robustness. The method also toler-
ates human-induced perturbations, as the robot can
track and follow repositioned objects until a successful
grasp is achieved.

From the second and third rows (“Ours@2” and
“Ours@3”), we observe that while randomness and
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Loading [MathJax]/extensions/MathMenu.jsFigure 5 | DexGraspVLA significantly outperforms al-
ternative designs in both seen and unseen object grasp-
ing experiments in the “zero-shot” environment. This
confirms the effectiveness of applying imitation learn-
ing on domain-invariant features.

incidental failures can occur on a single attempt, mul-
tiple attempts typically lead to success, elevating the
overall performance to 96.9% at three tries. This in-
dicates that our approach has the capacity to reach
even higher success rates. Finally, our model takes
around 6 s on average to grasp an object, which is
close to that of humans and ensures practical usability
in real-world scenarios.

Overall, our large-scale evaluations confirm that
DexGraspVLA can robustly handle a wide spectrum
of unseen scenarios, representing a meaningful step
toward general dexterous grasping and promising
broader real-world deployment.

5.3. Comparison to Baselines without Frozen
Vision Encoders

Tasks. To systematically compare DexGraspVLA with
baselines that do not employ frozen vision encoders
and learn directly from raw visual inputs, we conduct
single-object grasping experiments using 13 seen ob-
jects from the training dataset and 8 unseen objects.
We select five locations on the table that both span the
operational workspace and remain within the robot’s
reach and the head camera’s field of view. Each object
is placed at these five points, and at each point, we
let the policy grasp it twice. Note that the two grasps
of the same object at the same point are counted as
two separate tests rather than repeated attempts of
the same test. This approach quantitatively accounts
for the randomness in the experiments. In total, this
involves 210 tests. The environmental conditions in
these experiments are white tabletop and white light.

Metric. We report the success rates of each method
in the same way as Section 5.2.

Results. Figure 5 demonstrates that DexGraspVLA
(Ours) consistently reaches a more than 98% success
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No

Distraction

Background

Distraction

Lighting

Distraction
Aggregated

Planner 96.7% 100.0% 100.0% 99.3%

Table 2 | DexGraspVLA planner robustly achieves near-
perfect accuracy for bounding-box prediction in clut-
tered scenes across different environment conditions.

rate on both seen and unseen object grasping exper-
iments, outperforming both DexGraspVLA (DINOv2-
train) and DexGraspVLA (ViT-small) by a significant
margin. The fact that the aggregated performance
of our method in the “zero-shot” test environment is
near-perfect shows that DexGraspVLA (ours) is not
affected by domain shift in visual inputs. We also no-
tice that the performance on unseen objects is even
slightly better than on seen objects, which again con-
firms that our model learns to accomplish the grasping
task instead of overfitting to seen data in the training
set. By contrast, the alternative designs fail to work
properly in a novel environment, since they directly
map raw inputs to actions and the perceptual changes
easily render them out of distribution.

5.4. Bounding-box Prediction Accuracy of
Planner

Tasks. The bounding-box prediction accuracy of the
planner is crucial to the success of grasping, as it de-
termines the target for the controller. To evaluate this
accuracy, we design three types of tasks featuring dif-
ferent environmental distractions: (1) No Distraction
(1 scenario): The cluttered scene is arranged on a
white table under white light; (2) Background Distrac-
tion (2 scenarios): The cluttered scene is placed on
either a calibration board or a brightly colored table-
cloth, both under white light; (3) Lighting Distraction
(2 scenarios): The scene is set up in a dark room il-
luminated by either a desk lamp or a disco light. For
each scenario, we randomly arrange five cluttered
scenes, each containing six randomly selected objects,
and then record head-camera images. For each object,
we provide a textual prompt describing its appear-
ance and location, and check whether the planner’s
bounding-box prediction accurately marks the target.
In total, No Distraction accounts for 30 tests, while
Background Distraction and Lighting Distraction both
have 60 tests, amounting to 150 tests overall.

Metric. We define a bounding box as accurate if it
tightly encloses the target object. Accuracy is then
measured as the proportion of accurate bounding
boxes over all tested objects.

Results. The accuracy is reported in Table 2. For 150
prompts, the planner only mislabels one bounding box

White Mosaic Tablecloth
Tablecloth

& Disco Light

Raw 
Image

DINOv2 
Feature

Binary
Mask

Attention 
Map

Attention 
Visualized

Figure 6 | DexGraspVLA is robust to environmen-
tal variations. The first row presents the cropped
raw head images of the same cluttered objects in four
different environments: a white table, a calibration
board, a tablecloth, and a tablecloth under disco light.
The second row shows that the DINOv2 features of
images are consistent across variations. The third row
is the masks of the target objects accurately tracked
by Cutie. The fourth row reflects that the averaged
attention maps of DiT to head image features are also
consistent regardless of perceptual differences. The
fifth row confirms DexGraspVLA is attending to the
correct object. See Appendix B for full images.

while succeeding in the other 149 tests, resulting in
an aggregated accuracy exceeding 99%. This proves
that our planner reliably performs visual grounding
of user prompts and is capable of marking the correct
bounding box for the controller across varying degrees
of background and lighting complexity.

5.5. Internal Model Behavior Analysis

To further validate our design, we empirically prove
that the internal model behavior is consistent across
visual variations and show the results in Figure 6. Due
to space constraints, we only show the relevant por-
tion of each image containing the tabletop workspace.
The complete, uncropped images are provided in Ap-
pendix B. Specifically, we design four vastly different
environmental conditions: a white table, a calibration
board, a colorful tablecloth, and a colorful tablecloth
with disco light. In each environment, we construct
the same cluttered scene containing nine objects and
let DexGraspVLA “grasp the blue yogurt in the middle”.
While the head images in the first row of Figure 6 ap-
pear to be markedly diverse, the DINOv2 features in
the second row look rather consistent. These features
are visualized by mapping principal components to
RGB channels as done in Oquab et al. [20]. Across
environments, the object properties are robustly main-
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tained and matched, which fundamentally allows Dex-
GraspVLA trained on a single data domain to general-
ize. The third row shows that Cutie accurately tracks
the object, providing the correct guidance to the con-
troller. Based on the domain-invariant mask and the
DINOv2 features, the DiT action head now predicts the
subsequent actions. In the fourth row, we average and
normalize all cross-attentions to the head image from
DiT. We find that all attention maps exhibit the same
behavior of focusing on the target object instead of be-
ing distracted by environments. The fifth row overlays
the attention map on the raw image to confirm the
reasonable attention pattern. All visualization details
are provided in Appendix B. Therefore, we substanti-
ate that DexGraspVLA indeed transforms perceptually
diverse raw inputs into invariant representations, on
which it effectively applies imitation learning to model
the data distribution, explaining its superior general-
ization performance. Expectedly, it successfully grasps
the yogurt in all four environments.

6. Limitations

Although DexGraspVLA achieves high success rates
across a range of unseen scenarios, certain limita-
tions remain. First, due to the time limit, our train-
ing dataset does not encompass very small objects or
extremely cluttered environments; performance on
these more challenging cases could improve with ded-
icated data collection. Additionally, we have not yet
explored functional grasping for subsequent object
usage, which is a promising direction for future work.

7. Conclusion

This paper presents DexGraspVLA, the first hierarchi-
cal vision-language-action framework that advances
toward general dexterous grasping. It utilizes a pre-
trained VLM as the high-level planner to plan the
grasping process and a diffusion-based policy as the
low-level controller to perform closed-loop action
prediction for grasping. Within this paradigm, Dex-
GraspVLA capitalizes on the world knowledge of foun-
dation models to understand diverse raw inputs and
transform them into domain-invariant representations.
Imitation learning is then applied to model the map-
ping from representation to action distribution, which
is highly effective due to the alleviation of domain
shift. Our large-scale evaluations show that it attains
a success rate exceeding 90% across thousands of
unseen cluttered scenes in a “zero-shot” test environ-
ment, demonstrating robust generalization. An em-
pirical analysis of its internal model behavior further
validates the underlying framework design. Overall,
DexGraspVLA demonstrates the promise of leverag-

ing foundation models to enhance generalization in
dexterous grasping. We plan to further refine its per-
formance and broaden its applications in future work.
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A. Implementation Details

In this section, we present the details of DexGraspVLA
implementation (Appendix A.1), baseline implemen-
tation (Appendix A.2), and dataset collection (Ap-
pendix A.3).

A.1. Details of DexGraspVLA Implementation

Planner. The high-level planner operates as described
in Section 4.1. To obtain the bounding box for the
low-level controller using Qwen-VL-Chat, we begin
by cropping a fixed region of the head-camera image
that corresponds to the tabletop workspace. We then
feed this cropped area into the VLM, which identifies
the target object’s bounding box within it. Finally, the
coordinates are mapped back to the original image to
determine the bounding box used by the controller.
Several labeling results are shown in Figure 10.

By leveraging an off-the-shelf VLM as the planner,
our framework gains remarkable flexibility, enabling
easy replacement of the original VLM with more ad-
vanced models for enhanced performance. Our obser-
vations indicate that Qwen2.5-VL-72B-Instruct [72]
outperforms Qwen-VL-Chat (used in our experiments,
Section 5) in reasoning and instruction following,
leading to improved long-horizon task completion.
Furthermore, with the 72B model, the planner can
achieve near-perfect bounding box prediction accu-
racy without image cropping. Therefore, we provide
the prompts for the DexGraspVLA planner based on
Qwen2.5-VL-72B-Instruct below.

These prompts mainly instruct the VLM to function
as DexGraspVLA planner, including understanding the
user prompt, proposing an object as the current grasp-
ing instruction, marking the target object bounding
box, checking if the grasp has succeeded, assessing
whether the current instruction is completed, and eval-
uating whether the entire user prompt is fully fulfilled.
Specifically, when a user prompt 𝑝 is provided, the
planner classifies its type based on whether 𝑝 explicitly
specifies target objects with the following prompt.

Analyze the following user prompt: <user
prompt>

User prompt types:
- Type I (return True): User prompts with any
specific descriptions
Examples:
* Color-based: "green objects"
* Position-based: "objects from the right"
* Property-based: "all cups"
* Combination: "the red cup on the left"

- Type II (return False): Abstract prompts
without any object descriptions
Examples: "clear the table", "clean up",
"remove everything"

Please determine:
- Is this a Type I prompt? (True/False)
- Provide your reasoning

Return format:
True/False: your reasoning

Examples:
- "grab the green cup" -> True: Contains spe-
cific object (cup) and property (green)
- "clear the table" -> False: No specific object
characteristics mentioned

If 𝑝 is classified as “Type I”, meaning it explicitly
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specifies the objects to grasp, the planner generates
an ordered list of grasping instructions, using the fol-
lowing prompt and head-camera image.

For user prompt: <user prompt>
Process:
1. Analyze the user prompt and image to-
gether:
- Match user prompt descriptions with visible
objects in the image
- If a description (e.g., "green objects") matches
multiple objects, include all matching objects
- Verify each mentioned object actually exists
in the image

2. Based on the robot arm’s position
(right edge of the screen) and table layout
3. Determine the most efficient grasping se-
quence
4. Generate a reordered list of objects to grasp

Requirements:
- Only include objects mentioned in the original
user prompt
- Keep position information for each object
- Return as a list, ordered by grasping sequence

Expected output format:
["object with position 1", "object with position
2", ...]

Alternatively, if 𝑝 is classified as “Type II”, indicating
that the user intends to grasp all objects on the table,
the planner selects the optimal target object as the
current instruction. This selection is based on the
remaining objects on the table, using the following
prompt and head-camera image.

Analyze the current desktop layout and select
the most suitable object to grasp, considering
the following factors:

Grasping Strategy:
1. The robotic arm is positioned on the far right
(outside the frame)
2. Grasping Priority Order:
- Prioritize objects on the right to avoid knock-
ing over other objects during later operations
- Then consider objects in the middle
- Finally, consider objects on the left
3. Accessibility Analysis:
- Relative positions between objects
- Potential obstacles
- Whether the grasping path might interfere

with other objects

Please provide your response in the fol-
lowing JSON format:

{
"analysis": {
"priority_consideration": "

explanation of why this
object has priority",

"accessibility": "analysis
of object’s accessibility
",

"risk_assessment": "
potential risks in
grasping this object"

},
"target": "a comprehensive

description of the target
object (e.g., ’the blue
cube on the far right of
the desktop, next to the
red cylinder’)"

}

Ensure the output is in valid JSON format.
Note: The ’target’ field should ONLY contain
the object’s color, shape, and position in a nat-
ural, flowing sentence. Do not include any
analysis or reasoning in this field.

For each grasping instruction 𝑙, the planner marks
the bounding box of the target object using the fol-
lowing prompt and head-camera image.

Analyze the image and identify the best match-
ing object with the description: <target ob-
ject>.
Instructions for object analysis:
1. Select ONE object that best matches the
description
2. For the selected object, provide:
- A concise label, object name (3-4 words max)
- A detailed description (position, color, shape,
context)
- Accurate bbox coordinates

Required JSON format with an example:

{
"bbox_2d": [x1, y1, x2, y2],
"label": "green cup", # Keep

this very brief (3-4 words)
"description": "a cylindrical

green ceramic cup located
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on the right side of the
wooden table, next to the
laptop" # Detailed
description

}

Critical requirements:
- Return EXACTLY ONE object
- "label": Must be brief (3-4 words) for quick
reference
- "description": Must be detailed and include
spatial context
- Use single JSON object format, not an array
- Ensure bbox coordinates are within image
boundaries

During the controller’s execution, the planner veri-
fies whether the object has been successfully grasped,
using the following prompt and head-camera image.

Analyze the image and determine if the robotic
arm has successfully grasped an object:
1. Observe the spatial relationship between
the robotic hand and the object
2. Output format: explain your reasoning, then
conclude with a boolean value (True=grasped,
False=not grasped)

When a grasping attempt ends, the robot resets
to its initial state, and the planner checks whether
the current instruction has been completed, using the
following prompt and head-camera image.

Please check whether <target object> exists
on the desktop. If it does not exist, output
True; otherwise, output False.

For a “Type I” user prompt 𝑝, the planner considers
it fulfilled if all specified objects have been success-
fully grasped. For a “Type II” user prompt 𝑝, the
planner checks whether the prompt has been fully
completed after each grasping attempt, using the fol-
lowing prompt and head-camera image.

Please analyze the table in the image:

Requirements:
- Only detect physical objects with noticeable
height/thickness (3D objects)
- Exclude from consideration:
* Flat items (papers, tablecloths, mats)
* Light projections
* Shadows

* Surface patterns or textures

Return format:
- True: if the table is empty of 3D objects
- False: if there are any 3D objects, followed
by their names

Example responses:
True (for empty table)
False: cup, bottle, plate (for table with objects)

Controller. All raw images are produced by head and
wrist cameras at a resolution of 640 × 480 × 3. Cor-
respondingly, the resolution of mask is 640 × 480 × 1.
Through preliminary model selection, we decide to use
DINOv2 ViT-B/14 as the feature extractor 𝜙h for head
camera images and DINOv2 ViT-L/14 as the feature
extractor 𝜙w for wrist camera images. Before feeding
images into DINOv2, we resize them to 518× 518× 3.
During training, we apply domain randomization via
color jittering. Finally, the images are normalized
and fed into DINOv2 models. This leads to features
zh𝑡 ∈ ℝ1369×768 and zw𝑡 ∈ ℝ1369×1024. By processing
the mask m𝑡 with a randomly initialized ViT, we ex-
tract its features zm𝑡 ∈ ℝ1369×768. Patch-wise concate-
nation of zh𝑡 and zm𝑡 leads to z̄h𝑡 ∈ ℝ1369×1536. We
then project z̄h𝑡 , zw𝑡 , s𝑡 to the same feature space of
dimension 1024 with separate MLPs, yielding z̃h𝑡 ∈
ℝ1369×1024, z̃w𝑡 ∈ ℝ1369×1024, z̃s𝑡 ∈ ℝ1×1024, and con-
catenate them to form the full observation feature
sequence z̃obs𝑡 = (z̃h𝑡 , z̃w𝑡 , z̃s𝑡 ) ∈ ℝ2739×1024.

For action modeling, we define an action chunk
horizon of 𝐻 = 64. When we add noise to the action
during training, we employ Immiscible Diffusion [83]
to improve data-noise mapping. The noised action
chunk Â𝑡 belongs to ℝ64×13.

The DiT implementation is based on the original
DiT paper [80], diffusion policy [81], and RDT [76].
It first embeds the diffusion timestep to the same
hidden space as z̃obs𝑡 , yielding z̃d𝑡 ∈ ℝ1×1024, and
concatenates it with z̃obs𝑡 to form the condition se-
quence z̃𝑡 = (z̃obs𝑡 , z̃d𝑡 ) ∈ ℝ2740×1024. We project the
noised action chunk to the same hidden space, deriv-
ing z̃A𝑡 ∈ ℝ64×1024, and feed it into DiT. Each DiT layer
performs bi-directional attention within action tokens,
cross-attention to the condition sequence, and MLP
projections. Finally, the output is projected back to the
action space to be the model’s prediction of noise. Dur-
ing training, we compute MSE loss between the noise
prediction and ground truth, and back-propagate the
gradient to update all trainable parameters. During
inference, we start from Gaussian noise and iteratively
denoise it using DDIM sampling [84]. At each step,
the DiT model predicts the noise given the condition
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Hyper-parameter Value
epoch 84
learning rate 0.0001
learning rate scheduler cosine
learning rate warmup steps 2000
weight decay 0.0001
AdamW betas [0.95, 0.999]
seed 42
batch size per GPU 48
action horizon 64
number of DiT layers 12
number of DiT head 8
attention dropout 0.1
noise scheduler DDIMScheduler
num_train_timesteps 50
beta_start 0.0001
beta_end 0.02
beta_schedule squaredcos_cap_v2
clip_sample True
set_alpha_to_one True
steps_offset 0
prediction_type epsilon
num_inference_steps 16

Table 3 | Hyper-parameters of DexGraspVLA.

sequence, and we update the action chunk using the
DDIM scheduler until we obtain the final action. The
controller only executes the first six actions in the pre-
dicted action chunk before making a new prediction.

In total, the controller possesses 163M trainable pa-
rameters. To accelerate training, we utilize bfloat16
mixed-precision training, reducing memory usage and
improving computational efficiency. Additionally, we
employ FusedAdamW as the optimizer to further
speed up training through optimized memory access
and fused kernel execution. With these techniques,
we train the controller for 84 epochs over our dataset
on an 8-A800 GPU server, which takes less than one
day to complete. All hyper-parameters in our imple-
mentation are presented in Appendix A.1.

A.2. Details of Baseline Implementation

The baseline DexGraspVLA (DINOv2-train) is the same
as DexGraspVLA (Ours) described in Appendix A.1 ex-
cept that the two DINOv2 models are trainable instead
of frozen. The baseline DexGraspVLA (ViT-small) is
the same as DexGraspVLA (Ours) except that the two
DINOv2 models are replaced with two small trainable
pretrained ViTs (the R26-S-32 ResNet-ViT hybrid from
Steiner et al. [82]). Correspondingly, we resize the
images to 224 × 224 × 3 to feed them into ViT-small.
Each image is split into 49 patches, and the feature
dimension is 384.

(a) Our data collection site.

(b) The test environment where all experiments are
conducted.

Figure 7 | A comparison of the data collection and test
environments, which are located in different rooms.
Notably, the scenes captured by the robot’s cameras
vary significantly, especially for the wrist camera.

A.3. Details of Data Collection

We collect demonstrations through kinesthetic teach-
ing. At the beginning, the robot is set to teaching
mode, allowing manual guidance to grasp target ob-
jects. The operator then physically guides the robot to
the target position and performs the grasping motion.
The entire process follows a fixed duration (75 joint
angle values recorded at 20Hz). Subsequently, we re-
set the environment and execute PD control using the
recorded joint angles as target. At the same frequency,
these target joint angles serve as actions, while images
and current joint angles are collected as states. Fol-
lowing the same approach as the low-level controller,
we post-process the collected data to generate masks,
completing one demonstration sequence.

B. Experiment Details

B.1. The “Zero-Shot” Evaluation Environment

Figure 7 contrasts our data collection site and the test
site, which are located in separate rooms. We gather
all 2,094 human demonstrations at the data collection
site (Figure 7a), whereas the experiments in Section 5
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are conducted at the test site (Figure 7b). Because
these sites differ in layout and background, both the
head camera and the wrist camera encounter scenes
not present in the training data during evaluation —
particularly the wrist camera, which observes a no-
tably altered environment, capturing a variety of front
and peripheral views during operation. Despite these
environmental discrepancies, we do not collect any
data from the test site to fine-tune the models. Instead,
the models are deployed and evaluated directly, re-
sulting in a genuinely “zero-shot” testing environment.
Even under these conditions, DexGraspVLA achieves
an over 90% success rate in grasping tasks in cluttered
scenes across thousands of unseen object, lighting,
and background combinations, clearly demonstrating
its strong generalization capability.

B.2. Additional Details of Objects, Lightings,
and Backgrounds

We collect a total of 360 unseen objects, from which
103 items are randomly selected to be the object subset
S. In the main paper, the Unseen Objects experiment
is conducted on all 360 objects, whereas the Unseen
Lightings and Unseen Backgrounds experiments use
only the objects in S. The three unseen lighting condi-
tions comprise disco light, lamp light, and dark light.
Meanwhile, the six unseen backgrounds include a
black mouse pad, a pink towel, a colorful tablecloth,
a black-and-white mouse pad, a wooden board, and a
calibration board. These conditions are illustrated in
Figure 8.

B.3. Details of Visualization

In this part, we explain how we visualize the internal
model behavior shown in Figure 6. Due to space con-
straints, Figure 6 only presents the relevant portion
of images containing the tabletop workspace. The full
version is shown in Figure 9. The first row is raw im-
ages from the head camera resized to 518 × 518 × 3.
The second row illustrates the DINOv2 ViT-B/14 fea-
tures following the practice introduced in DINOv2
paper [20]. To make the resulting feature map rec-
ognizable for visualization purpose, we enlarge both
the height and weight of images by a factor of six
before feeding them into DINOv2. After obtaining
the feature sequences for all four images, we combine
these features, perform a PCA between all patches,
and set a threshold to remove background regions.
We then apply PCA again, this time to the remain-
ing foreground features, map the top three principal
components to the RGB channels, and normalize the
result. This yields the visualization shown in the sec-
ond row. The third row showcases the binary masks
m𝑡 ∈ ℝ518×518×1 tracked by Cutie. The fourth row

displays the averaged DiT attention maps over the
head image features. This is computed by summing
attention weights to each head image patch across
all diffusion steps, DiT layers, DiT heads, and action
tokens, and normalize the sum to one. The shape of
the averaged attention map is 37 × 37 × 1. Finally, we
upsample the attention map to 518×518×1, multiply
it by 2 to increase brightness, and use it to scale the
value channel of head images in HSV space, resulting
in the visualization shown in the fifth row.

C. Additional Results

This section provides additional results for the exper-
iments in the main paper. In Table 4, we report the
detailed success rates for our large-scale generaliza-
tion evaluation under each environment condition,
corresponding to Table 1 in Section 5.2. From the first
row (“Ours@1”), it is evident that DexGraspVLA main-
tains consistently high success rates across various un-
seen object, lighting, and background combinations.
Many observed failures stem from randomness in pol-
icy inference; allowing additional attempts often re-
covers these failed cases. Accordingly, the second and
third rows (“Ours@2” and “Ours@3”) show further
improvements in performance, highlighting the po-
tential for DexGraspVLA to reach even higher success
rates. In Figure 10, we present examples of bounding-
box predictions produced by the DexGraspVLA plan-
ner. Despite substantial variation in environmental
conditions, the planner consistently grounds grasping
instructions in cluttered scenes and provides the cor-
rect bounding boxes. Notably, we can label objects by
names such as “Coca Cola” or “milk,” reflecting the sys-
tem’s extensive common sense and world knowledge.
By drawing on the broad knowledge embedded in
each of its foundation models, DexGraspVLA achieves
robust generalization across diverse scenarios.
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Unseen
Objects

Unseen
Lightings

Unseen
Backgrounds

Unseen
Backgrounds

White table, 
white light

White table, 
disco light

White table,
lamp light 

White table,
dark light 

Black mouse pad,
white light 

Pink towel, 
white light

Colorful tablecloth, 
white light

Black-white 
mouse pad, 
white light

Wooden board, 
white light

Calibration board, 
white light

Figure 8 | Environment conditions used in our large-scale generalization evaluation (Section 5.2).

Tasks

Unseen

Objects

(360)

Unseen Lightings

(3 × 103)

Unseen Backgrounds

(6 × 103) Aggregated

(1287)
Lighting

Conditions

White

Light

Disco

Light

Lamp

Light

Dark

Light

White

Light

White

Light

White

Light

White

Light

White

Light

White

Light

Background

Conditions

White

Table

White

Table

White

Table

White

Table

Black

Mouse Pad

Pink

Towel

Colorful

Tablecloth

Black-White

Mouse Pad

Wooden

Board

Calibration

Board

Ours@1 91.1% 92.2% 89.3% 91.2% 94.2% 84.5% 90.3% 92.2% 93.2% 88.3% 90.8%

Ours@2 95.3% 97.0% 95.1% 93.2% 97.1% 90.3% 91.3% 95.1% 98.1% 93.2% 94.7%

Ours@3 96.7% 98.1% 98.1% 96.1% 98.1% 91.3% 94.2% 98.1% 100.0% 98.1% 96.9%

Table 4 | The detailed performance of DexGraspVLA under different unseen conditions, which indicates that
our approach consistently achieves high success rates across various objects, lightings, and backgrounds. The
second and third rows highlight its potential to reach even higher success rates given more chances.
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Figure 9 | The complete, uncropped version of Figure 6.

Figure 10 | Bounding-box predictions made by DexGraspVLA planner based on Qwen-VL-Chat. Across diverse
lighting and background conditions, it accurately grounds the language instruction to the target object in
cluttered scenes and marks the correct bounding box.

21


	Introduction
	Related work
	Dexterous Grasping
	Foundation Models for Robotics

	Problem Formulation
	Methods
	DexGraspVLA Framework
	Data Collection

	Experiments
	Experiment Setups
	Large-Scale Generalization Evaluation
	Comparison to Baselines without Frozen Vision Encoders
	Bounding-box Prediction Accuracy of Planner
	Internal Model Behavior Analysis

	Limitations
	Conclusion
	Implementation Details
	Details of DexGraspVLA Implementation
	Details of Baseline Implementation
	Details of Data Collection

	Experiment Details
	The ``Zero-Shot'' Evaluation Environment
	Additional Details of Objects, Lightings, and Backgrounds
	Details of Visualization

	Additional Results

